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A B S T R A C T   

We develop a method to predict the growth/no growth response of previously unseen bacteria, using Raman 
spectral features and a machine-learning model. Twenty-one strains of bacteria were isolated from seven 
commercially available fresh-cut vegetables. Twenty Raman spectra of single cells were acquired for each iso-
lated strain. The growth/no growth responses of each strain in a liquid medium were evaluated with two levels of 
sodium acetate concentrations, two incubation temperatures, and eight sampling times using optical density to 
confirm growth limit conditions. The Raman spectra of 20 strains and their forty-eight growth/no growth re-
sponses were used to train an artificial neural network model to predict the growth/no growth of unknown 
bacteria. Our model predicted the growth/no growth of 21 unknown bacteria with an overall accuracy of 90%. 
Such rapid characterization of unknown bacterial growth using Raman spectroscopy will be valuable for the food 
manufacturing industry, where unknown bacteria are often encountered.   

1. Introduction 

Microbial control is used to ensure food preservation and continuity 
of production. A great variety of bacteria across many microbial genera 
are found on food and are involved in food spoilage or food poisoning 
(Jay et al., 2005; Rawat, 2015). Predicting the growth behavior of target 
microorganisms is useful for determining environmental conditions for 
food safety and quality assurance during processing, distribution, and 
storage (Stavropoulou & Bezirtzoglou, 2019). Bacterial responses over 
time have been investigated using various combinations of environ-
mental factors in predictive microbiology (Ross & McMeekin, 1994). 
Statistical models have been developed to predict the target bacterial 
population behavior in various food environmental conditions across 
varying temperature, pH, and water activity (Walls & Scott, 1997). 
These prediction models enable the quantitative evaluation of target 
bacterial population behavior in various types of foods for decision 
making for setting processing and storage conditions. Thus, research to 
predict the target pathogenic and spoilage bacterial behavior is impor-
tant for protecting food safety and quality. 

Some representative strains have been studied to predict bacterial 
population behavior. However, different strains of the same bacterial 
species can have different sensitivities to factors related to population 

growth behavior (Aryani et al., 2015; Dengremont & Membre, 1995; 
Lianou & Koutsoumanis, 2011, 2013). Even if the genus and species of 
unknown bacteria in food products were identified, bacterial stress re-
sponses are usually predicted based on a similar strain or closely related 
species, as reported in previous studies. The prediction of growth based 
on similar information may cause problems in terms of accuracy and 
reliability because there is a lack of objective links between target strains 
or species. Thus, to predict the population behavior at the strain level, 
efforts are needed to link the stress tolerance of each strain. 

Recently, Raman spectroscopy has attracted attention for the iden-
tification of bacteria in the medical and food safety fields (Yan et al., 
2021). Raman spectroscopy is capable of rapid and nondestructive 
measurement of molecular vibration (Jaafreh et al., 2019) and provides 
biological information at the molecular level (Moreira et al., 2008). 
Indeed, it is possible to classify bacterial genera or species using Raman 
spectroscopy (Huayhongthong et al., 2019; Yan et al., 2021). In addi-
tion, Raman spectroscopy and chemometrics can be useful for identi-
fying the stress tolerance of spoilage bacteria to food additives 
(Yamamoto et al., 2021) and the characteristics of antimicrobial resis-
tance (Germond et al., 2018). Since Raman spectra and chemometric 
analysis objectively capture information about the molecules and can 
classify bacterial resistance to diverse stresses, such as antibiotics and 
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food additives, the relationship between bacterial spectral fingerprints 
and known bacterial population behavior may be applied to predict 
unknown bacterial population growth capability. 

The purpose of this study was to predict the growth behavior of 
unknown microorganisms in a culture medium using Raman spectros-
copy and machine learning. Bacteria in freshly-cut vegetables were 
investigated because cut vegetables can be easily contaminated at all 
stages of production (Lehto et al., 2011). First, 21 strains across nine 
genera were isolated from seven freshly-cut vegetable samples, which 
were then measured to obtain the Raman spectra. Second, the growth of 
the isolated bacteria in a liquid medium was evaluated at various so-
dium acetate concentrations, incubation temperatures, and sampling 
times by optical density measurement. Finally, we predicted the growth 
probability of unknown bacteria based on the sodium acetate concen-
tration, temperature, incubation time, and Raman spectral features 
using machine learning. Prediction of unknown bacterial behavior using 
a simple procedure would help the food industry quickly establish food 
processing and storage conditions. 

2. Materials and methods 

2.1. Isolation of bacterial strains from fresh-cut vegetables 

The target of the bacteria is isolated from the food since there is a 
large variety of strain. We collected seven kinds of freshly-cut vegeta-
bles, including various ingredients, at supermarkets and convenience 
stores in Kyoto, Japan. The details of the freshly-cut vegetables are 
described in Supplementary Table 1. To isolate bacteria from the freshly- 
cut vegetable samples, a 25 g portion of fresh-cut vegetables was ho-
mogenized in 225 g of phosphate-buffered saline (PBS) for 3 min using a 
homogenizer (Pro-media SH-IIM, ELMEX, Japan) to obtain a suspension. 
The suspension was appropriately diluted with PBS and 1 mL of each 
suspension was transferred to sterile Petri dishes mixed with standard 
plate count agar (SPC agar, NISSUI, Japan). Once the medium had so-
lidified, it was incubated for 48 h at 35 ◦C under aerobic conditions. The 
major colonies obtained from incubated SPC agar were randomly iso-
lated and placed on SPC agar using a loop. In this study, three strains 
were isolated from each sample of the cut vegetables. Twenty-one 
strains were identified, and the isolated colonies were stored at 5 ◦C. 

2.2. Identification of the isolated bacteria strains 

Isolated bacteria were identified according to the method described 
in the 17th edition of the Japanese Pharmacopoeia (http://www.mhlw. 
go.jp/topics/bukyoku/iyaku/yakkyoku/english.html). Briefly, the 
genomic DNA of the isolated bacteria was extracted from the culture 
with PrepManTM Ultra Sample Preparation Reagent (Life Technologies, 
USA) and used directly as a PCR template to amplify the divergent re-
gion of the 16S rRNA gene using 10 F primer (5′-GTTTGATCCTGGCTCA- 
3′) and 800 R primer (5′-TACCAGGGTATCTAATCC-3′). PCR products 
(approximately 740 bp) were purified using ExoSAP-IT (Affymetrix part 
of Thermo Fisher Scientific, MA, USA) for sequencing. Sequencing re-
actions were performed in a Bio-Rad DNA Engine Dyad PTC-220 Peltier 
Thermal Cycler, using the BigDye™ Terminator v3.1 Cycle Sequencing 
Kit (Thermo Fisher Scientific, MA, USA), according to the manufac-
turer’s instructions. Single-pass sequencing was performed on each 
template using a 10 F primer. The fluorescently labeled fragments were 
purified from the unincorporated terminators either by the ethanol 
precipitation method or using the BigDye Terminator™ Purification Kit 
(Thermo Fisher Scientific, MA, USA). The samples were analyzed using a 
3730xl DNA analyzer (Thermo Fisher Scientific, MA, USA). 

The 16S rRNA gene sequences obtained were compared with those of 
the type strains available in the EzBioCloud database (https://www. 
ezbiocloud.net/) (Yoon et al., 2017) to determine the approximate 
phylogenetic affiliation of each strain. The evolutionary history was 
inferred using the maximum likelihood method and the Kimura 

2-parameter model (Kimura, 1980). Initial trees for the heuristic search 
were obtained automatically by applying Neighbor-Join and BioNJ al-
gorithms to a matrix of pairwise distances estimated using the maximum 
composite likelihood approach and then selecting the topology with a 
superior log likelihood value. A discrete gamma distribution was used to 
model evolutionary rate differences among the sites (five categories 
(+G, parameter = 0.6550)). The analysis involved 35 nucleotide se-
quences. All positions containing gaps and missing data were elimi-
nated. The final dataset contained 655 positions. Evolutionary analyses 
were conducted using MEGA X (Kumar et al., 2018). The non-rooted 
phylogenetic trees were visualized using an online website the Interac-
tive Tree of Life website (https://itol.embl.de) (Letunic & Bork, 2021). 

2.3. Sample preparation and Raman spectra measurements 

In subsequent experiments, the isolated bacteria in the stock were 
transferred to SPC agar by platinum loop and then used after culturing 
for 48 h at 35 ◦C under aerobic conditions. The Raman spectrum of a 
single cell was collected using a laser Raman microscope (RAMAN 
touch, Nanophoton, Osaka, Japan). The excitation source was a 532 nm 
laser operated at 10 mW. A 20 × /0.45 objective lens (Nikon TU Plan 
Fluor, Nikon) with a laser spot size of approximately 720 nm was used to 
focus the excitation light on the sample. Raman spectra were acquired 
using a 300 lines/mm grating for 30 s. Two spectra from a single spot 
were averaged to obtain the mean spectra. The Raman shift was cali-
brated using silicon (520 cm− 1) before the spectra were acquired. 
Cultured cells were suspended in 50 μL of pure water using a 1-μL loop. 
Aliquots (1 μL) of the suspension were dropped onto a stainless steel 
piece (SUS430, HIKARI, Osaka, Japan), which was air-dried before 
starting the Raman measurement. Twenty averaged Raman spectra were 
obtained for each strain using a range of Raman shifts from 125 to 4690 
cm− 1 with increments of 5.0 cm− 1. 

2.4. Bacterial growth experiment 

In this study, we aimed to predict the growth/no growth of unknown 
strains in a certain culture medium using Raman spectroscopy and 
machine learning. Therefore, we decided to predict the growth/no 
growth of unknown strains under different combinations of sodium ac-
etate, a food additive, and low temperatures. To construct the prediction 
model, we first investigated the growth/no growth of bacteria under the 
following conditions using optical density measurements. The condi-
tions of this experiment were two incubation temperatures (5 and 
10 ◦C), three sodium acetate concentrations (0, 0.25, and 0.50% w/v), 
and eight incubation time periods (0, 1, 2, 3, 4, 5, 6, and 7 d). Thus, the 
total number of experimental conditions used was 48. 

The pH of tryptic soy broth (TSB) was adjusted to pH 6.5 using 1 M 
hydrochloric acid. The cultured cells were suspended in TSB using a 1-μL 
loop and diluted with TSB to a bacterial concentration of 104 CFU mL− 1 

in TSB at the start of the culture. Aliquots (100 μL) of the suspension 
were dispensed into wells of 96-well flat-bottom culture plates (Corning 
3595 96-well cell culture plate, Corning, NY, USA) with three replicates 
for each condition. The optical density (absorbance at 600 nm, OD600) of 
each well was measured using a microplate reader SH-9000 Lab (Corona 
Electric, Ibaraki, Japan) at the beginning of the experiment and every 
other day thereafter. Three iterations of the experiment were performed 
according to previous literature (Kuroda et al., 2019; Presser et al., 
1998; Rodríguez-Saavedra et al., 2021). In this study, the threshold 
OD600 value was set to 0.1 (Yamamoto et al., 2021). If the OD600 value 
was less than 0.1, the population was considered to have no growth. If 
the OD600 value was ≥0.1, the bacterial population was considered to be 
growing. 

2.5. Feature extraction from Raman spectra of bacteria 

The preprocessing procedure consisted of four parts: removal of 
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cosmic rays and baseline contamination, smoothing, and standardiza-
tion. First, all spectra with cosmic spikes were identified by visual in-
spection, and the cosmic spikes were removed using Raman 
spectroscopy software (Raman viewer, Nanophoton). The maximum 
intensity within a selected range of ±120 cm− 1 was replaced with the 
median intensity in that range. Second, concave baseline correction was 
performed on all spectra using a seventh-degree recursive polynomial 
fitting algorithm (Lieber & Mahadevan-Jansen, 2003; Taylor et al., 
2019). Third, the spectra were smoothed using Savitzky-Golay poly-
nomial filters (polyorder 2, 25 cm− 1 window length) (Savitzky & Golay, 
1964). Fourth, each Raman spectrum was standardized such that the 
mean intensity was 0 and the variance was 1. Finally, linear discriminant 
analysis (LDA) was used for data-dimensionality reduction (FISHER, 
1938). LDA is a method of maximizing the distance between pre-
specified classes and thereby finding the axis of dimensionality reduc-
tion (Schumacher et al., 2014). In this study, classes were specified for 
each strain. The Raman spectral data were dimensionally reduced from 
914 to 10 using LDA. 

2.6. Aggregated hierarchical clustering 

Aggregated hierarchical clustering was performed using 10-dimen-
sional LDA values for comparison with a phylogenetic tree based on 
the 16S rRNA information. Using SciPy (Virtanen et al., 2020) in Python 
packages, each strain was sorted by hierarchical clustering using mean 
linkage and Euclidean distance metrics, based on the average of each 
value from LDA1 to LDA10. 

2.7. Model development and evaluation 

We constructed models to predict bacterial growth/no growth from 
the incubation temperature, sodium acetate concentration, incubation 
time, and Raman spectral features of the bacteria. Independent variables 
of the classification model used were temperature, concentrations of 
sodium acetate, incubation time, and ten LDA values (LDA 1 to LDA 10). 
The dependent variable was the probability of growth in the range of 
0–1. For training and evaluation of the classification model, 2880 data 
points were prepared per strain. The 2880 data points were generated by 
three replicates of multiplying 48 growth/no growth conditions and 20 
measurements of Raman features (LDA values). 

The flow from the model development to the prediction of the 
growth probability is shown in Fig. 1. First, the incubation temperature, 
concentration of sodium acetate, incubation time, and 1–10 LDA values 
were standardized in advance. Out of the 21 strains, 20 were used for 
training data and one was used for test data. The input values for the 
machine learning model were temperature, sodium acetate concentra-
tion, incubation time, and 10 LDA values (LDA 1 to LDA 10). The true 
label was observed growth/no growth, and a range of 0–1 output were 
used as the proliferation probability. 

The artificial neural network (ANN) classification model consisted of 
an input layer, one hidden layer, and an output layer. An ANN with a 
single hidden layer was built using the TensorFlow (Abadi et al., 2016) 
and Keras (https://keras.io) packages in Python. ANN can approximate 
complex relationships between explanatory and observed variables 
without the need to assume the type of relationship or degree of 
nonlinearity between the various independent and dependent variables 
(Hajmeer & Basheer, 2002). The output of the model was the growth 
probability of the bacterial population. We chose ANN with a single 
hidden layer since the deeper layer model may overfit to the training 
data (Kuroda et al., 2019). 

The hyperparameters of the ANN were determined using the 
Bayesian optimization implementation provided by Keras Tuner 
(O’Malley et al., 2019). Hyperparameter determination and model 
training was performed using the hold-out method, and 25% of the data 
for each strain in the training data were split into validation data. The 
number of hidden layer units (10, 15, 20, 25, 30, and 35), dropout rate 

(0.1, 0.2, 0.3, 0.4, and 0.5) (Srivastava et al., 2014), and learning rate 
(0.1, 0.01, 0.001, and 0.0001) were hyperparameters for exploration. 
The optimizer used was adaptive moment estimation (Adam) (Kingma & 
Ba, 2015). The hidden layer of the activation function was a rectified 
linear unit (ReLU) (Nair & Hinton, 2010). A sigmoid activation function 
was used as the output layer. The batch size was set to one-tenth that of 
the training data, and the number of epochs was 50. We also added an 
early stopping function (Raskutti et al., 2014) to prevent overfitting. 
Learning was set to stop if no loss reduction of the validation data was 
observed during the five epochs. Binary cross-entropy was used as the 
loss function (De Boer et al., 2005; Lee & Song, 2019). The hyper-
parameters were determined each time the test strains were changed to 
create the model. The hyperparameters determined for each test strain 
are shown in Supplementary Table 2. 

The performance of the constructed models was evaluated using the 
overall accuracy and area under the curve (AUC) as metrics of the pre-
dictive models. The data were classified into two classes (growth/no 
growth, threshold = 0.5, and growth probability). The overall accuracy 
was calculated as the percentage of correct responses for all the pre-
dictions. The AUC was calculated by plotting the true positive rate 
against the false positive rate at various thresholds to create a receiver 
operating characteristic (ROC) curve, taking a value between 0 and 1 in 
the region under the ROC curve. The AUC is useful for comparing 
multiple models when the class sampling is imbalanced (Saito & 
Rehmsmeier, 2015). and is 0.5 for classifiers whose prediction is 
random, and 1.0, for perfect classifiers (Hanley & McNeil, 1982). If the 
AUC exceeds 0.9, the model is considered highly accurate (Fischer et al., 
2003). 

Fig. 1. Flow diagram of growth probability prediction model construction. 21 
models were created for each test strain. 
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3. Results 

3.1. Strains isolated from fresh-cut vegetables and their genotypic 
identification 

A total of 21 strains were isolated from seven types of cut vegetables 
(samples A to G). Based on the results of the 16S rRNA sequencing in the 
first half (approximately 720–740 bp) of each strain, a closely related 
species was estimated (Table 1). Nine genera were isolated from cut 
vegetables, each with seven strains of Pseudomonas sp. (Pseudomonas 
B1, Pseudomonas B3, Pseudomonas E1, Pseudomonas E2, Pseudomonas 
E3, Pseudomonas F1, and Pseudomonas F3), six strains (Rahnella A1, 
Rahnella A2, Rahnella A3, Rahnella G1, Rahnella G2, and Rahnella G3) 
of Rahnella sp., two strains (Erwinia B2 and Erwinia C2) of Erwinia sp., 
and one strain of Arthrobacter sp. (Arthrobacter D3), Kluyvera sp. 
(Kluyvera C3), Lactococcus sp. (Lactococcus F2), Leuconostoc sp. (Leu-
conostoc C1), Serratia sp. (Serratia D1), and Pantoea sp. (Pantoea D2). A 
non-root-based phylogenetic tree of the isolates from fresh vegetables is 
shown in Fig. 2. The strains were divided into three major groups: 
Enterobacterales (Erwinia sp., Kluyvera sp., Pantoea sp., Rahnella sp., and 
Serratia sp.), Pseudomonas sp., and Gram-positive bacteria (Lactococcus 
sp., Leuconostoc sp., and Arthrobacter sp.). 

3.2. Extracted features obtained from Raman spectra 

Twenty replicates of Raman spectra were obtained for the isolated 21 

food-related strains, namely seven strains of Pseudomonas sp., six strains 
of Rahnella sp., two strains of Erwinia sp., one strain of Arthrobacter sp., 
one strain of Kluyvera sp., one strain of Lactococcus sp., one strain of 
Leuconostoc sp., one strain of Serratia sp., and one strain of Pantoea sp. 
Fig. 3 shows the preprocessed and averaged Raman spectra of each 
strain and the base substrate of SUS430. Raman spectra were similar to 
each other, except that Pantoea D2 showed specific spectra in the 1000 
cm− 1 1200 cm− 1 and 1500 cm− 1 1600 cm− 1 regions (Fig. 3). 

The dimensions of the Raman spectra were reduced using LDA for 
further analyses. Fig. 4 shows a pair plot created based on the LDA value 
obtained from the Raman spectrum. The pair plot created using 
LDA1–LDA5 confirmed a cluster of strains. The cluster of strains is 
shown separately for Pantoea sp. at LDA1 and LDA2-5, Arthrobacter sp. at 
LDA2 and LDA3, and Pseudomonas sp. mainly at LDA2 and LDA4–5 
(Fig. 4). Fig. 5 shows the dendrograms created based on LDA1 to LDA10. 
The distances in the Raman information between Rahnella sp. (Rahnella 
A1, Rahnella A2, Rahnella A3, Rahnella G1, Rahnella G2, and Rahnella 
G3) were close to each other in the 16S rRNA classification (Figs. 2 and 
5), but only Pantoea sp. (Pantoea D2) was far from the same Entero-
bacteriaceae strains in the Raman information (Figs. 2 and 5). 

3.3. Model performance 

We evaluated whether the constructed classification model could 
predict the growth of previously unseen bacteria based on their Raman 
spectral features at arbitrary incubation times, sodium acetate concen-
trations, and temperatures. A representative result of growth/no growth 
response at 10 ◦C for two Pseudomonas spp. is shown in Fig. 6. Pseudo-
monas, E2, and F1 were different species (Table 1). Both strains 
exhibited different growth/no growth responses, especially tolerance to 
sodium acetate. Even though species variability was observed in the 
examined Pseudomonas spp., the developed classification model was 
able to express the growth/no growth boundary for each strain (Fig. 6). 
A representative result of growth/no growth response at 10 ◦C for 
Leuconostoc C1 and Pantoea D2 are shown in Fig. 7. Only Leuconostoc 
C1 and Pantoea D2 genera were contained in the test data. The results of 
predicting the growth probability of Leuconostoc C1 showed a growth/ 
no-growth boundary (Fig. 7a). By contrast, the developed model could 
not predict the growth characteristics of Pantoea D2 (Fig. 7b). The 
developed model enabled the prediction of growth/no growth boundary 
of unknown species and unknown genera, except for Pantoea D2, which 
had the longest distance in the dendrogram constructed with Raman 
spectra (Fig. 5). 

Table 2 summarizes the results of the overall accuracy and AUC of 
growth/no growth prediction for unknown bacteria using Raman spec-
tral features. The mean overall accuracy and AUC for all the test data 
were 0.90 and 0.91. Each bacterium was treated as an unknown bac-
terium, and the growth/no growth of unknown bacteria was predicted. 
In some cases, the training set and predicted data contained bacteria of 
the same genus, whereas in other cases, the training data contained 
bacteria that were not in the predicted data. The mean Overall accuracy 
and AUC for the unknown levels of the test data were 0.86 and 0.83 for 
the unknown genera, 0.92 and 0.92 for the unknown species, and 0.92 
and 0.94 for the unknown strains. The strain with the highest evaluation 
was Pseudomonas E2, with an overall accuracy of 1.00 and an AUC of 
1.00. The lowest evaluation strain was Pantoea D2, with an overall ac-
curacy of 0.77 and an AUC of 0.50. The mean value of the overall ac-
curacy and AUC for unknown bacteria, except for Pantoea D2, was 
approximately 0.9. Strains other than Pantoea D2, whose distance in the 
dendrogram of Raman features was less than approximately 25 (Fig. 5), 
were predicted with a certain overall accuracy. 

4. Discussion 

In this study, we developed and validated a machine learning model 
to predict the growth/no growth of unknown bacteria isolated from 

Table 1 
Similarity of 16S rRNA of each isolation retrieved by EzBioCloud.  

Cut-Vegetable 
sample No. 

Named Strain Top-hit taxon Top-hit 
strain 

Similarity 
(%) 

A Rahnella A1 Rahnella aceris SAP-19 100.0 
Rahnella A2 Rahnella aquatilis CIP 

78.65 
99.2 

Rahnella A3 Rahnella aquatilis CIP 
78.65 

99.3 

B Pseudomonas 
B1 

Pseudomonas 
viridiflava 

DSM 
6694 

100.0 

Erwinia B2 Erwinia persicina NBRC 
102418 

99.6 

Pseudomonas 
B3 

Pseudomonas 
rhodesiae 

CIP 
104664 

99.7 

C Leuconostoc 
C1 

Leuconostoc 
holzapfelii 

BFE 
7000 

99.2 

Erwinia C2 Erwinia persicina NBRC 
102418 

99.9 

Kluyvera C3 Kluyvera intermedia NBRC 
102594 

100.0 

D Serratia D1 Serratia myotis 12 99.6 
Pantoea D2 Pantoea eucalypti LMG 

24198 
99.9 

Arthrobacter 
D3 

Arthrobacter oryzae KV-651 99.6 

E Pseudomonas 
E1 

Pseudomonas 
grimontii 

CFML 
97-514 

100.0 

Pseudomonas 
E2 

Pseudomonas 
viridiflava 

DSM 
6694 

100.0 

Pseudomonas 
E3 

Pseudomonas 
kitaguniensis 

MAFF 
301498 

99.9 

F Pseudomonas 
F1 

Pseudomonas 
extremorientalis 

KMM 
3447 

99.9 

Lactococcus 
F2 

Lactococcus lactis 
subsp. Cremoris 

NCDO 
607 

99.9 

Pseudomonas 
F3 

Pseudomonas 
extremorientalis 

KMM 
3447 

100.0 

G Rahnella G1 Rahnella aquatilis CIP 
78.65 

100.0 

Rahnella G2 Rahnella aquatilis CIP 
78.65 

99.7 

Rahnella G3 Rahnella aquatilis CIP 
78.65 

99.3 

Coverage of 16S rRNA: 48.9–49.8%. 
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commercially available freshly cut vegetables using Raman spectros-
copy (Figs. 6 and 7). The model predicted growth/no growth of un-
known bacteria with an average overall accuracy of 90% (Table 2). 
Other currently used growth/no growth models with the function of 
environmental factors are limited to the prediction of only known bac-
teria in the training set because there is no link among strains. By 
contrast, in the present study, Raman spectra served to provide a link 
between unknown and known bacteria. Therefore, the combination of 
Raman spectroscopy and machine learning demonstrated the potential 
to rapidly provide the growth behavior of bacteria that were not used in 
the training of the model. 

Raman spectra with chemometrics have been used to classify mi-
croorganisms by species and phylogeny (Klein et al., 2019; Meisel et al., 
2014; Yan et al., 2021). Based on previous reports, we assumed that the 
processing of Raman spectra would enable the creation of clusters in 
terms of biological taxonomy. The dimensionality of the obtained 
spectra was reduced using LDA with the label for each strain (Fig. 4). 
Confirming the cluster distance of each strain for the Raman 
spectra-derived features created in our study, the closely related species 
in the results obtained by 16S rRNA analysis formed clusters at a close 
distance (Figs. 2 and 5). Clustering by 16S rRNA gene analysis infers the 
genus and species of an unknown bacterium based on its proximity to 
the genetic distance (Janda & Abbott, 2007). Thus, the bacteria were 

judged to be similar to the closest genus and species based on Raman 
spectra and LDA. 

The bacterial and bacterial population behaviors were identified 
separately. Genetic approaches and spectroscopy methods have been 
used to identify bacteria (Ho et al., 2019; Yoon et al., 2017). Bacterial 
population behavior has been investigated using predictive microbi-
ology. Our model successfully integrated Raman spectral data into the 
prediction of the unknown strain population behavior. Although sensory 
data have been suggested for use in assessing food safety and quality 
(Nychas et al., 2021), there is no research combining sensory data for the 
prediction of population behavior. Our approach enabled us to predict 
the behavior of the bacterial population. Our evaluation will be bene-
ficial for dealing with foodborne diseases and food spoilage incidents. 

Rapid and simple identification of bacterial species and their stress 
responses plays a key role in determining bacterial control methods. 
Raman spectroscopy has been used to identify food-related microor-
ganisms in the previous studies (Huayhongthong et al., 2019; Meisel 
et al., 2014; Yilmaz et al., 2015). However, the stress tolerance of this 
strain remains unclear. Although the stress tolerance of a species is 
inferred from similar species, stress tolerance can differ among species. 
For example, some species of Pseudomonas sp. have different stress tol-
erances to sodium acetate (Fig. 6). Links among bacteria are required to 
predict bacterial responses. Our approach attempted to overcome this 

Fig. 2. Non-rooted phylogenetic trees of the isolates from the fresh-cut vegetable including the type strains are based on the partial 16S rRNA gene sequence. The 
tree was drawn to scale, with branch lengths measured in the number of substitutions per site. 
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problem by using the similarity between known and unknown bacteria 
characterized in terms of their Raman scattering properties. Considering 
that the Raman spectroscopy approach is rapid for characterizing bac-
teria compared to genetic methods, the method developed in this study 
could rapidly predict growth/no growth for the same genera with 
different stress tolerances. 

The lowest AUC was 0.5 in the prediction of Pantoea D2 (Table 2). 

One likely explanation for the low prediction performance was that the 
Raman spectra and clusters of Pantoea D2 were significantly different 
from those of other strains (Figs. 4 and 5). Pantoea sp. have been re-
ported to have different Raman features among bacteria (Polisetti et al., 
2016). Because the prediction accuracy was low, a sample of Pantoea D2 
should be assigned to an unpredictable condition. This constraint cannot 
usually be guaranteed a priori in our predictions. Therefore, the 

Fig. 3. Mean spectra of strain after preprocessing that cosmic ray removed, baseline corrected, smoothed and intensity standardized. SUS430 was the result of 
measurement without bacterial samples. The 20 single cell spectra were used 20 for each average spectrum. 

Fig. 4. A matrix of scatter plot of LDA 1 to LDA 5 
derived from Raman spectra. Color-coded by strain and 
each symbol has a different type of genus by the simi-
larity of 16S rRNA of each isolation (Table 1), as fol-
lows, × : Arthrobacter sp., ▴: Erwinia sp., ★: Kluyvera 
sp., ◆: Leuconostoc sp., ⬢: Lactococcus sp., ◆: Pantoea 
sp., ■: Rahnella sp., ●: Pseudomonas sp., ⬟: Serratia sp. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version 
of this article.)   
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reliability of the prediction results was estimated. For example, un-
known bacteria should be characterized by a Gaussian process (Kemmler 
et al., 2013) or binary classification (Meisel et al., 2012) before pre-
diction. Analytical techniques should be developed to ensure the reli-
ability of predictions for the growth/no-growth of unknown bacteria in 
the future. 

This study has limited performance in probabilistic evaluation. Since 
the experimental repetition is three, the probabilistic part is roughly 
estimated. For a more detailed prediction, much more repetition is 
needed (Tsuruma et al., 2021). Nevertheless, the presented model can 

predict the boundary of growth/no growth. 
Predicting bacterial growth in food products may require predictions 

under complex conditions because there are many food composition 
factors and environmental conditions that can affect microbial growth 
(Labuza & Fu, 1993). Environmental and food storage stresses (such as 
heating, cooling, and exposure to acidity or alkalinity) damage various 
cellular structures, such as microbial cell walls, cell membranes, pro-
teins, RNA, and DNA (Wesche et al., 2009). Athamneh et al. (Athamneh 
et al., 2014) found that the Raman spectra of E. coli contain sufficient 
biochemical information to distinguish phenotypes induced by antibi-
otics with different mechanisms. Phenotypic profiling and discriminant 
analysis were used to demonstrate the potential for predicting the 
function (inhibition of protein, cell wall, DNA, and RNA synthesis) of 
antibiotics whose mechanism of action is unknown. In other words, 
since Raman spectroscopy might utilize information at the DNA and 
RNA levels as well as the protein and cell wall, we might be able to 
derive information on environmental and food storage stresses that act 
at the microbial cell wall, protein, and DNA levels. The combination of 
Raman spectroscopy and machine learning would allow us to predict the 
bacterial response to various environments with pH, osmotic pressure, 
and heat, which can be applied in food processing and preservation 
industries in the future. 

5. Conclusion 

Our machine learning model could predict the growth/no growth 
response of 21 unknown bacterial strains in culture media with 90% 
overall accuracy. Our modeling procedure enabled us to extract infor-
mation from Raman spectra of known bacteria to predict the growth/no 
growth of unknown bacteria that were not used in the training of the 

Fig. 5. Dendrogram of an agglomerative hierarchical cluster analysis per-
formed on LDA values of the preprocessed Raman spectra of twenty-one strains. 
UPGMA algorithm was used for cluster analysis. 

Fig. 6. The representative observation of growth (○)/no growth ( × ) of Pseudomonas E2 (a) and Pseudomonas F1 (b) as unknown bacteria at 10 ◦C and growth 
probability contour lines for unknown strain predicted by the artificial neural network model. 

Fig. 7. The representative observation of growth (○)/no growth ( × ) of Leuconostoc C1 (a) and Pantoea D2 (b) as unknown bacteria at 10 ◦C and growth probability 
contour lines for unknown strain predicted by artificial neural network model. 
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model. Prediction of the growth behavior of unknown bacteria is valu-
able for the food manufacturing industry, where unknown bacteria are 
likely to be detected. 
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and surface contamination in fresh-cut vegetable production plants. Food Control, 22 
(3–4), 469–475. https://doi.org/10.1016/j.foodcont.2010.09.029 

Letunic, I., & Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for 
phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), 
W293–W296. https://doi.org/10.1093/nar/gkab301 

Lianou, A., & Koutsoumanis, K. P. (2011). Effect of the growth environment on the strain 
variability of Salmonella enterica kinetic behavior. Food Microbiology, 28(4), 
828–837. https://doi.org/10.1016/j.fm.2010.04.006 

Lianou, A., & Koutsoumanis, K. P. (2013). Strain variability of the behavior of foodborne 
bacterial pathogens: A review. International Journal of Food Microbiology, 167(3), 
310–321. https://doi.org/10.1016/j.ijfoodmicro.2013.09.016 

Table 2 
Overall accuracy and AUC when predicting growth/no growth with Raman 
spectral features. In all 21 strains, one strain was used as test data, and the 
remaining 20 strains were used as training data.  

Test strains Unknown level Overall accuracy AUC 

Arthrobacter D3 Genera 0.82 0.88 
Erwinia B2 Strain 0.89 0.94 
Erwinia C2 Strain 0.95 0.96 
Kluyvera C3 Genera 0.93 0.94 
Lactococcus F2 Genera 0.82 0.86 
Leuconostoc C1 Genera 0.88 0.89 
Pantoea D2 Genera 0.77 0.50 
Pseudomonas B1 Species 0.95 0.97 
Pseudomonas B3 Species 0.86 0.84 
Pseudomonas E1 Species 0.81 0.78 
Pseudomonas E2 Species 1.00 1.00 
Pseudomonas E3 Species 0.93 0.97 
Pseudomonas F1 Strain 0.86 0.88 
Pseudomonas F3 Strain 0.80 0.87 
Rahnella A1 Species 0.94 0.96 
Rahnella A2 Strain 0.93 0.95 
Rahnella A3 Strain 0.94 0.97 
Rahnella G1 Strain 0.94 0.97 
Rahnella G2 Strain 0.96 0.97 
Rahnella G3 Strain 0.98 0.99 
Serratia D1 Genera 0.92 0.92 
Average Genera 0.86 0.83  

Species 0.92 0.92  
Strain 0.92 0.94  
Overall 0.90 0.91  

T. Yamamoto et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.lwt.2023.114449
https://doi.org/10.1016/j.lwt.2023.114449
https://www.tensorflow.org/
https://doi.org/10.1016/j.ijfoodmicro.2015.05.006
https://doi.org/10.1016/j.ijfoodmicro.2015.05.006
https://doi.org/10.1128/AAC.02098-13
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1007/s10479-005-5724-z
https://doi.org/10.1128/aem.61.12.4389-4395.1995
https://doi.org/10.1128/aem.61.12.4389-4395.1995
https://doi.org/10.1007/s00134-003-1761-8
https://doi.org/10.1007/s00134-003-1761-8
https://doi.org/10.1111/j.1469-1809.1938.tb02189.x
https://doi.org/10.1038/s42003-018-0093-8
https://doi.org/10.1038/s42003-018-0093-8
https://doi.org/10.1016/S0167-7012(02)00080-5
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1038/s41467-019-12898-9
https://doi.org/10.1016/j.lwt.2019.108419
https://doi.org/10.1016/j.lwt.2019.108419
https://doi.org/10.1016/j.talanta.2019.04.082
https://doi.org/10.1016/j.talanta.2019.04.082
https://doi.org/10.1128/JCM.01228-07
https://doi.org/10.1007/b100840
https://doi.org/10.1016/j.aca.2013.07.051
https://doi.org/10.1007/BF01731581
http://refhub.elsevier.com/S0023-6438(23)00027-0/sref18
http://refhub.elsevier.com/S0023-6438(23)00027-0/sref18
http://refhub.elsevier.com/S0023-6438(23)00027-0/sref18
https://doi.org/10.1016/j.talanta.2018.12.094
https://doi.org/10.1016/j.talanta.2018.12.094
https://doi.org/10.1093/molbev/msy096
https://doi.org/10.1007/BF01584208
https://doi.org/10.1007/BF01584208
https://doi.org/10.29220/CSAM.2019.26.6.591
https://doi.org/10.1016/j.foodcont.2010.09.029
https://doi.org/10.1093/nar/gkab301
https://doi.org/10.1016/j.fm.2010.04.006
https://doi.org/10.1016/j.ijfoodmicro.2013.09.016


LWT 174 (2023) 114449

9

Lieber, C. A., & Mahadevan-Jansen, A. (2003). Automated method for subtraction of 
fluorescence from biological Raman spectra. Applied Spectroscopy, 57(11), 
1363–1367. https://doi.org/10.1366/000370203322554518 
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